Existing measures and representations for trajectories have two longstanding fundamental shortcomings, i.e., they are computationally expensive and they can not guarantee the `uniqueness' property of a distance function: dist(X,Y) = 0 if and only if X=Y, where $X$ and $Y$ are two trajectories. This paper proposes a simple yet powerful way to represent trajectories and measure the similarity between two trajectories using a distributional kernel to address these shortcomings. It is a principled approach based on kernel mean embedding which has a strong theoretical underpinning. It has three distinctive features in comparison with existing approaches. (1) A distributional kernel is used for the very first time for trajectory representation and similarity measurement. (2) It does not rely on point-to-point distances which are used in most existing distances for trajectories. (3) It requires no learning, unlike existing learning and deep learning approaches. We show the generality of this new approach in three applications: (a) trajectory anomaly detection, (b) anomalous sub-trajectory detection, and (c) trajectory pattern mining. We identify that the distributional kernel has (i) a unique data-dependent property and the above uniqueness property which are the key factors that lead to its superior task-specific performance; and (ii) runtime orders of magnitude faster than existing distance measures.
translated by 谷歌翻译
With the success of neural volume rendering in novel view synthesis, neural implicit reconstruction with volume rendering has become popular. However, most methods optimize per-scene functions and are unable to generalize to novel scenes. We introduce VolRecon, a generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF). To reconstruct with fine details and little noise, we combine projection features, aggregated from multi-view features with a view transformer, and volume features interpolated from a coarse global feature volume. A ray transformer computes SRDF values of all the samples along a ray to estimate the surface location, which are used for volume rendering of color and depth. Extensive experiments on DTU and ETH3D demonstrate the effectiveness and generalization ability of our method. On DTU, our method outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable quality as MVSNet in full view reconstruction. Besides, our method shows good generalization ability on the large-scale ETH3D benchmark. Project page: https://fangjinhuawang.github.io/VolRecon.
translated by 谷歌翻译
Harvesting question-answer (QA) pairs from customer service chatlog in the wild is an efficient way to enrich the knowledge base for customer service chatbots in the cold start or continuous integration scenarios. Prior work attempts to obtain 1-to-1 QA pairs from growing customer service chatlog, which fails to integrate the incomplete utterances from the dialog context for composite QA retrieval. In this paper, we propose N-to-N QA extraction task in which the derived questions and corresponding answers might be separated across different utterances. We introduce a suite of generative/discriminative tagging based methods with end-to-end and two-stage variants that perform well on 5 customer service datasets and for the first time setup a benchmark for N-to-N DialogQAE with utterance and session level evaluation metrics. With a deep dive into extracted QA pairs, we find that the relations between and inside the QA pairs can be indicators to analyze the dialogue structure, e.g. information seeking, clarification, barge-in and elaboration. We also show that the proposed models can adapt to different domains and languages, and reduce the labor cost of knowledge accumulation in the real-world product dialogue platform.
translated by 谷歌翻译
We present DualNER, a simple and effective framework to make full use of both annotated source language corpus and unlabeled target language text for zero-shot cross-lingual named entity recognition (NER). In particular, we combine two complementary learning paradigms of NER, i.e., sequence labeling and span prediction, into a unified multi-task framework. After obtaining a sufficient NER model trained on the source data, we further train it on the target data in a {\it dual-teaching} manner, in which the pseudo-labels for one task are constructed from the prediction of the other task. Moreover, based on the span prediction, an entity-aware regularization is proposed to enhance the intrinsic cross-lingual alignment between the same entities in different languages. Experiments and analysis demonstrate the effectiveness of our DualNER. Code is available at https://github.com/lemon0830/dualNER.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
许多现实世界中普遍存在的应用程序,例如停车建议和空气污染监测,都能从准确的长期时空预测(LSTF)中受益匪浅。 LSTF利用了空间和时间域,上下文信息和数据中固有模式之间的长期依赖性。最近的研究揭示了多画望神经网络(MGNN)提高预测性能的潜力。但是,由于几个问题,现有的MGNN方法不能直接应用于LSTF:一般性低,不充分使用上下文信息以及不平衡的图形融合方法。为了解决这些问题,我们构建了新的图形模型,以表示每个节点的上下文信息和长期时空数据依赖性结构。为了融合跨多个图形的信息,我们提出了一个新的动态多绘图融合模块,以通过空间注意力和图形注意机制来表征图中节点和跨图的节点的相关性。此外,我们引入了可训练的重量张量,以指示不同图中每个节点的重要性。在两个大规模数据集上进行的广泛实验表明,我们提出的方法显着改善了LSTF预测任务中现有图形神经网络模型的性能。
translated by 谷歌翻译
有限的GPU记忆资源阻碍了深度神经网络的进一步发展。因此,高度要求GPU内存资源的优化。通常应用交换和重新计算,以更好地利用GPU记忆。但是,作为一个新兴领域,仍然存在一些挑战:1)静态和动态方法的重新计算效率受到限制。 2)交换需要手动卸载参数,这会产生巨大的时间成本。 3)没有这种动态和细粒的方法,涉及张量与当今的张量重新组件一起交换。为了纠正上述问题,我们提出了一个名为Delta(动态张量卸载和重新组件)的新型调度程序经理。据我们所知,我们是第一个在没有用户监督的情况下进行张量交换和张量重新组合的合理的动态运行时间调度程序。在Delta中,我们提出了一种过滤器算法,以选择要从GPU内存中释放出来的最佳张量,并提出导演算法,以选择每个张量的适当动作。此外,故意考虑预取和重叠以克服交换和重新计算张量引起的时间成本。实验结果表明,DELTA不仅节省了40%-70%的GPU记忆,从而超过了最新方法,而且还获得了可比的收敛结果,并获得了可接受的时间延迟。此外,与基准相比,当训练Resnet-101训练Resnet-101时,Delta在训练Resnet-50和2.25 $ \ times $时获得2.04 $ \ times $最大批量。此外,我们实验中的交换成本和重新计算成本之间的比较表明,在张量交换和张量重新计算上制定合理的动态调度程序的重要性,这在某些相关工作中反驳了交换应该是第一个也是最好的选择。
translated by 谷歌翻译
3D pose estimation is a challenging problem in computer vision. Most of the existing neural-network-based approaches address color or depth images through convolution networks (CNNs). In this paper, we study the task of 3D human pose estimation from depth images. Different from the existing CNN-based human pose estimation method, we propose a deep human pose network for 3D pose estimation by taking the point cloud data as input data to model the surface of complex human structures. We first cast the 3D human pose estimation from 2D depth images to 3D point clouds and directly predict the 3D joint position. Our experiments on two public datasets show that our approach achieves higher accuracy than previous state-of-art methods. The reported results on both ITOP and EVAL datasets demonstrate the effectiveness of our method on the targeted tasks.
translated by 谷歌翻译
Unit commitment (UC) are essential tools to transmission system operators for finding the most economical and feasible generation schedules and dispatch signals. Constraint screening has been receiving attention as it holds the promise for reducing a number of inactive or redundant constraints in the UC problem, so that the solution process of large scale UC problem can be accelerated by considering the reduced optimization problem. Standard constraint screening approach relies on optimizing over load and generations to find binding line flow constraints, yet the screening is conservative with a large percentage of constraints still reserved for the UC problem. In this paper, we propose a novel machine learning (ML) model to predict the most economical costs given load inputs. Such ML model bridges the cost perspectives of UC decisions to the optimization-based constraint screening model, and can screen out higher proportion of operational constraints. We verify the proposed method's performance on both sample-aware and sample-agnostic setting, and illustrate the proposed scheme can further reduce the computation time on a variety of setup for UC problems.
translated by 谷歌翻译
Contrastive learning has become a new paradigm for unsupervised sentence embeddings. Previous studies focus on instance-wise contrastive learning, attempting to construct positive pairs with textual data augmentation. In this paper, we propose a novel Contrastive learning method with Prompt-derived Virtual semantic Prototypes (ConPVP). Specifically, with the help of prompts, we construct virtual semantic prototypes to each instance, and derive negative prototypes by using the negative form of the prompts. Using a prototypical contrastive loss, we enforce the anchor sentence embedding to be close to its corresponding semantic prototypes, and far apart from the negative prototypes as well as the prototypes of other sentences. Extensive experimental results on semantic textual similarity, transfer, and clustering tasks demonstrate the effectiveness of our proposed model compared to strong baselines. Code is available at https://github.com/lemon0830/promptCSE.
translated by 谷歌翻译